

Printed Page: 1 of 2
Subject Code: KEE301
Roll No:

#### BTECH (SEM III) THEORY EXAMINATION 2021-22 ELECTROMAGNETIC FIELD THEORY

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

## SECTION A

| 1.    | Attempt all questions in brief.                                                                                              | 2 x 10 | <b>= 20</b> |
|-------|------------------------------------------------------------------------------------------------------------------------------|--------|-------------|
| Q no. | Question                                                                                                                     | Marks  | CO          |
| a.    | Find the value of $(3 \hat{a}_x + 6 \hat{a}_y)X (2 \hat{a}_x + 3 \hat{a}_y + 5 \hat{a}_z)$ , where X denotes cross product.  | 2      | 1           |
| b.    | Find the unit vector of the vector $\vec{A} = (7 \ \hat{a}_x + 2 \ \hat{a}_y + 8 \ \hat{a}_z)$ .                             | 2      | 1           |
| c.    | Explain Electric Field Intensity.                                                                                            | 2      | 2           |
| d.    | Prove that $\vec{\mathbf{E}} = -\mathbf{grad} \mathbf{V}$ , where E is Electric Field Intensity and V is Electric Potential. | 2      | 2           |
| e.    | Prove that curl $\vec{A}=0$ , if $\vec{A}=(yz\ \hat{a}_x+zx\ \hat{a}_y+xy\ \hat{a}_z)$ .                                     | 2      | 3           |
| f.    | Narrate the concept of electric dipole moment.                                                                               | 2      | 3           |
| g.    | Explain the term 'Inductance.'                                                                                               | 2      | 4           |
| h.    | Explain the concept of Magnetic Flux Density.                                                                                | 2      | 4           |
| i.    | Explain the physical significance of Poynting vector.                                                                        | 2      | 5           |
| j.    | Explain the reflection of a plain wave in a normal incidence.                                                                | 2      | 5           |

#### **SECTION B**

## 2. Attempt any *three* of the following:

 $3 \times 10 = 30$ 

| Q no. | Question                                                                                                                                                                                                                    | Marks | СО |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|
| a.    | Given that $\vec{A} = \left(\frac{5r^2}{4}\right)\hat{a}_r$ is in spherical coordinates, solve both sides of                                                                                                                | 10    | 1  |
|       | the divergence theorem for the volume enclosed by $r=4m$ , and $\theta=\frac{\pi}{4}$ shown in below figure.                                                                                                                |       |    |
| b.    | Derive the mathematical expression for energy stored in electric field. If $V = yx^2 + zx + xy$ V, Do the analysis of $\vec{E}$ at $(2, 3, 7)$ and the electrostatic energy stored in a cube of side 4m centered at origin. | 10    | 2  |
| c.    | Explain Biot-Savart's Law. Find the magnetic field intensity for infinite line current.                                                                                                                                     | 10    | 3  |
| d.    | Explain the ampere circuital law. Derive two applications of ampere circuital law. Also, derive modified maxwell's equations.                                                                                               | 10    | 4  |
| e.    | Derive the mathematical equation for Poynting vector.                                                                                                                                                                       | 10    | 5  |



|          |  |  |  |   | P     | rinte | d Pa | ge: 2 | 2 of 2 | , |
|----------|--|--|--|---|-------|-------|------|-------|--------|---|
|          |  |  |  | S | Subje | ect C | ode: | KE    | E301   |   |
| Roll No: |  |  |  |   |       |       |      |       |        | ı |

#### BTECH (SEM III) THEORY EXAMINATION 2021-22 ELECTROMAGNETIC FIELD THEORY

## **SECTION C**

| 3. | Attemnt | anv | one  | nart ( | of the | following:  |
|----|---------|-----|------|--------|--------|-------------|
| J. | Attempt | any | UILE | part   | or the | IUIIUWIIIZ. |

 $1 \times 10 = 10$ 

| Q no. | Question                                                                                                       | Marks | CO |
|-------|----------------------------------------------------------------------------------------------------------------|-------|----|
| a.    | Investigate the values of X, Y, and Z. If $\vec{A} = (2 \hat{a}_x + 4 \hat{a}_y + 5 \hat{a}_z)$ is transformed | 10    | 1  |
|       | as $\vec{A} = (X \hat{a}_r + Y \hat{a}_\theta + Z \hat{a}_\phi)$                                               |       |    |
| b.    | Derive the Poisson's and Laplace equation in all coordinate systems.                                           | 10    | 1  |

# 4. Attempt any *one* part of the following:

 $1 \times 10 = 10$ 

| Q no. | Question                                                                                                                                                                                                                                        | Marks | CO |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|
| a.    | Point charges 1 mC and $-2$ mC are located at $(3, 2, -1)$ and $(-1, -1, 4)$ , respectively. Calculate the electric force on a 10 nC charge located at $(0, 3, 1)$ and the electric field intensity at that point.                              | 10    | 2  |
| b.    | Given the potential $V = \frac{560}{3r^2} \sin 2\theta \cos \phi$ ,<br>Find the electric flux density D at $(2, 90^0, 0)$ . Also calculate the work done in moving a $10 \mu C$ charge from point A $(1, 30^0, 120^0)$ to B $(2, 60^0, 30^0)$ . | 10    | 2  |

# 5. Attempt any *one* part of the following:

 $1 \times 10 = 10$ 

| Q no. | Question                                                             | Marks | CO |
|-------|----------------------------------------------------------------------|-------|----|
| a.    | Explain convection and conduction currents. Derive mathematical      | 10    | 3  |
|       | equations also. Also derive the magnetic vector potential.           |       |    |
| b.    | What is magnetic dipole? Find magnetic vector potential. Explain the | 10    | 3  |
|       | complete Magnetic boundary conditions. Derive all tangential and     |       |    |
|       | normal components.                                                   |       |    |

# 6. Attempt any *one* part of the following:

 $1 \times 10 = 10$ 

| Q no. | Question                                                                                                                               | Marks | CO |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|-------|----|
| a.    | Explain transformer and motional electromotive forces with necessary                                                                   | 10    | 4  |
|       | mathematical expressions. If vector $\mathbf{A} = yx^2 \mathbf{a} \mathbf{x} + zx \mathbf{a} \mathbf{y} + xy \mathbf{a} \mathbf{z}$ is |       |    |
|       | expressed as, where ax, ay, and az are the unit vectors. Find the vector                                                               |       |    |
|       | B.                                                                                                                                     |       |    |
| b.    | A charged particle of mass 2 kg and charge 3 C starts at point (1, -2, 0) with                                                         | 10    | 4  |
|       | velocity $4 \mathbf{a}_x + 3 \mathbf{a}_z$ m/s in an electric field $12 \mathbf{a}_x + 10 \mathbf{a}_y$ V/m. At time t=1 sec,          |       |    |
|       | determine- the acceleration of the particle, its velocity, kinetic energy of the                                                       |       |    |
|       | particles and its position.                                                                                                            |       |    |

# 7. Attempt any *one* part of the following:

 $1 \times 10 = 10$ 

| Q no. | Question                                                                                                                                | Marks | CO |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------|-------|----|
| a.    | Explain uniform plane wave. Derive uniform plane waves in lossless dielectrics. What is skin effect? Explain the Smith chart in detail. | 10    | 5  |
| b.    | What is transmission line. Derive all the supporting mathematical equations of the transmission line.                                   | 10    | 5  |